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SUMMARY 

An ana lys is  has been made t o  determine t h e  e f f e c t s  of low-density phenom- 
e n a  on the  forced convect ion hea t - t ransfer  chara ,c ter is t ics  for f i i l l y  cieveloped 
la.mi.riar flow i n  a parnl le1 pl-ate cliarinel f o r  i insy-metrical  heati-ng involving a 
constant heat  i’lux along each of the w a l l s -  Consideration i s  given t o  t h e  
s l ip-f low r e g h e  wherein the  major r a r e f a c t i o n  e f f e c t s  a r e  manifested as veloc- 
i t y  and tpinperature jumps a t  the  channel w a l l s .  The r e s u l t s  obtained apply 
a,long the  e n t i r e  length of t he  channel. The solukion contains series expa.n- 
s ions,  and a n a l y t i c a l  expressions f o r  t h e  complete sets of eigenvalues and 
eigenfunctions a r e  presented. The r e s u l t s  give the  w a l l  temperatures and t h e  
thermal entrance lengths f o r  t h e  channel f o r  various mean f r e e  paths  and w a l l  
he3-t i‘Lux r - x t i o s .  The r e s u l t s  i nd ica t e  t h a t ,  i n  general ,  t h e  thermal entrance 
leng-tli is d ~ ~ . r . ~ ~ - : ~ ~ s e d  wi-Lh increasing sas rarei’action ana also t h a t  f o r  a given 
mean f r e e  lxt,i2*l i. i l2 i llc:r.,t l r t l  eii-trance 1.ength i s  g rea t e r  f o r  unsyimetrical  heati.ng 
than f o r  a ;;yllfi;ietrical was1 heat f lux .  Extension of t h e  resu- l t s  i s  made or in -  
d ica ted  t o  accoiiiit T o r  1.ess IYecluently considered s l i p  e f f e c t s  such as w a l l  
shear work, mod i.f ied Leiiipc:rature j i i rnp ,  and thelBrnal rrcep ve loc i ty .  

l.NTRODUC’l’I ON 

The hea t ing  and cool-ing of gases flowing ins ide  ducts  a r e  among the  m o s t  
i.mportant hea t - t ransfer  processes i.n engineering. The design and a.na,lysis of 
cotiipact heat  exchange equipment, f o r  example, requi res  a knowledge of the  du.ct  
w a l l  temperatures. Asymmetric hea t ing  or cooling i s  o f t en  enCOiJ.ntered when 
deal ing with forced convection hea t  t ramsfer  f o r  gas flow through f l a t  rectan-  
gular  du-cts. I n  a cuinpact heat  exchanger, f o r  instance,  t h e  core very olften 
cons is t s  of s tacks of rectangiilar pa.ssages through which a gas flows. I n  t h e  
outermost passage of t h e  exchanger core,  t h e  gas flows between a p l a t e  and t h e  
iunheated s Lr.uctLil.2 which may be insii lated from the  outs ide environment. Other 
examples of instances when t h i s  s i t u a t i o n  may arise are (1) when d i f f e r e n t  
cool.ants are crnployed i n  adjacent  flow channels, so t h a t  t he  sandwiched gas ex- 
periences unequal hea t  add i t ion  or removal a t  i t s  channel walls; ( 2 )  when t h e  
temperature of  t h e  environment a t  one s ide  d i f f e r s  from t h a t  a t  t h e  other  s ide  



of the  channel, so t h a t  unequal w a l l  heat f luxes  exist; or (3) when heat  leak- 
age o r  addi t ion  through insu la t ion  occurs. 

A n  increas ingly  important engineering problem i s  t h a t  of pred ic t ing  heak- 
t r a n s f e r  c h a r a c t e r i s t i c s  of s l i g h t l y  r a r e f i e d  gases flowing ins ide  ducts .  
Under t h e  conditions of h igh-a l t i tude  f l i g h t ,  f o r  example, the  gas flow ins ide  
a f la t  duct may be s u f f i c i e n t l y  r a r e f i e d  so t h a t  t he  appropriate  mean f r e e  path 
becomes too l a rge  f o r  t he  appl ica t ion  of continuum t r a n s f e r  equations but not 
l a rge  enough f o r  free-molecule or  t r a n s i t i o n  concepts t o  apply. I n  t h i s  flow 
regime of s l i g h t  gas r a re fac t ion ,  termed t h e  s l ip - f low regime, t h e  gas dens i ty  
i s  s l i g h t l y  l e s s  than  t h a t  c h a r a c t e r i s t i c  of a continuum flow. A t  t h i s  
s l i g h t l y  reduced densi ty ,  t he  gas adjacent t o  a s o l i d  surface w i l l  have a ve- 
l o c i t y  and temperature d i f f e r e n t  from those of t he  surface.  The e f f e c t s  on the  
hea t - t ransfer  conditions i n  channels of these  low-density phenomena, combined 
with unsymmetrical heat ing o r  cooling s i t u a t i o n s ,  a r e  of p r a c t i c a l  i n t e r e s t  t o  
t h e  design engineer. 

The case of laminar continuum flow between p a r a l l e l  f l a t  p l a t e s  with d i f -  
f e r e n t  temperatures prescr ibed along each of t h e  two w a l l s  has been considered 
i n  references 1 t o  3. The case of laminar continuum flow between p a r a l l e l  
f l a t  p l a t e s  with unsymmetrically prescr ibed heat  f lux a t  t h e  w a l l s  has been i n -  
ves t iga ted  i n  reference 4. 

Heat t r a n s f e r  f o r  1amina r . s l i p  flow of a r a r e f i e d  gas i n  a p a r a l l e l  p l a t e  
channel has been s tudied f o r  uniform w a l l  heat  f l u x  (ref.  5 ) .  
allow f o r  e i t h e r  equal heat ing at  both w a l l s  o r  heat ing one w a l l  and in su la t ing  
a t  the  other .  

The r e s u l t s  

The present inves t iga t ion  i s  concerned with the  heat  t r a n s f e r  f o r  laminar 
s l i p  flow of a r a r e f i e d  gas between p a r a l l e l  p l a t e s  with constant but unequal 
heat  f luxes  spec i f ied  at the  w a l l s .  Flow through a f la t  rectangular  duct may 
be expected t o  approximate t h e  flow between p a r a l l e l  p l a t e s  if  one s ide  of t he  
rectangle  i s  la rge  compared with the  o ther ,  t h e  heat f luxes  being perpendiculax 
t o  t he  long s ide .  I n  addi t ion ,  t h e  r e s u l t s  a r e  expected t o  apply f o r  annul i  
where the  rad ius  r a t i o  i s  c lose t o  uni ty .  

The present ana lys i s  requi res  the  ca l cu la t ion  of  t h e  odd elgenvalues and 
constants f o r  laminar s l i p  flow of a r a r e f i e d  gas, such t h a t  t h e  complete solu- 
t i o n  i s  obtained by combining these  odd quan t i t i e s  with t h e  even eigenvalues 
and constants t h a t  have been determined i n  reference 5 f o r  a symmetrically pre- 
scr ibed uniform w a l l  hea t  f lux .  

I n  t h e  main body of t h e  inves t iga t ion ,  t h e  e f f e c t s  of ve loc i ty - s l ip  and 
temperature-jump boundary conditions a r e  s tudied.  I n  the  f i n a l  sec t ion  of t he  
inves t iga t ion ,  modification of t he  hea t - t ransfer  r e s u l t s  w i l l  be made or d i s -  
cussed. to  account f o r  t h e  e f f e c t s  of w a l l  shear work, modified temperature 
jump, and thermal creep ve loc i ty .  

ANALYSIS 

A schematic diagram of t h e  system under s tudy i s  p ic tured  i n  figure 1, 
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which a l s o  shows dimensions and coordinates. The d i -  
r ec t ion  of t he  gas flow i s  from le f t  t o  r i g h t .  The 
flow i s  assumed t o  be laminar, incompressible, and 

t0 Ytx .k-- f u l l y  developed. The f u l l y  developed ve loc i ty  d i s t r i -  
bution f o r  s l i p  flow i n  a p a r a l l e l  p l a t e  channel has 
been considered i n  reference 5, and the  r e s u l t s  a r e  

92 used i n  t h e  present invest igat ion.  For x < 0 t h e  
channel w a l l s  and gas are isothermal a t  temperature 

un i t  surface a rea )  ql and q2 are applied at  t h e  
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t t t t f  

- Physical model and coordinate Figure 
system. tc! whereas f o r  x 2 0 t h e  constant heat f luxes (per 

upper and lower w a l l s ,  respect ively.  These fluxes are taken as pos i t ive  when 
t h e  gas i s  being heated. It i s  desired t o  determine t h e  temperature d i s t r ibu -  
t i o n s  along t h e  e n t i r e  length of t he  channel. 

Energy Equation 

The energy equation f o r  t h e  channel i l l u s t r a t e d  i n  f igu re  1 can be wr i t t en  
as 

a t  a2t 
a Y z  

u ~ = a -  

The gas propert ies  have been assumed constant,  and viscous d iss ipa t ion  and 
a x i a l  conduction have been neglected compared with conduction i n  the  t ransverse 
y-direct ion.  The boundary conditions are 

Specified wall heat f lux: 

Specified w a l l  heat f l ux :  

Specified entrance temperature: 

t = to a t  x = O  

The s l ip-f low ve loc i ty  d i s t r i b u t i o n  i s  given i n  reference 5 as 
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where 8 E Su/2b. The s l i p  coe f f i c i en t  eu i s  given by t h e  expression 
( r e f .  6 )  

- . g  2 5, = - g ( 4 )  

where g i s  t h e  specular r e f l e c t i o n  coe f f i c i en t  and 2 i s  t h e  mean free path,  

Equations (1) and ( 2 )  may be expressed i n  terins of nondimensional quan t i t i e s  as 

t = to a t  ( = O  ( 7 4  

To obtain a so lu t ion  f o r  t tha.t w i l l  apply over t h e  e n t i r e  length of t h e  
channel, it i s  convenient t o  break t i n t o  two parts. The f i r s t  p a r t  is  t d ,  
t h e  f u l l y  developed so lu t ion ,  which appl ies  far down t h e  chanilel frorri t h e  en- 
t rance.  te, which i s  a n  entrance reg ion  solu.tion thak i s  
added t o  td 
channel. The temperatures throughout t he  channel are given by 

The second pa,rt i s  
t o  obta in  tempera,tu-res i n  the  region near t he  entrance of t h e  

Fully Developed Solut ion 

Far from t h e  entrance of t h e  channel t h e  temperature r i s e s  l i n e a r l y  i n  the  
a x i a l  d-irection because of t h e  unif‘orm (but unequal) hea t  inputs  a t  t h e  chmnel  
wa.lls. From a heat balance on the  gas, t h e  temperature gradient  i n  the  f u l l y  
developed region must be 

For the  ful-ly developed s i tva”~ior i  t he  boumdayy cord i t ion  a t  the  entrance of t he  
heated channel (x = 0 )  need not be considered, s ince  it i s  accounted f o r  by t h e  
entra,nce region so lu t ion ,  and equation ( 9 )  may be rephrased as 
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The fi inction 
equation ( 6 ) .  This leads  t o  t h e  equation f o r  H(7) as 

H ( 7 )  i s  found by i .nserting equation (10) i n t o  t h e  d i f f e r e n t i a l  

The boundary cond.itions on 
t d ,  S O  t h a t  

H(7) are determined from t h e  boiindary conditions on 

(12b) 

Consideration of an o v e r a l l  energy balance on t h e  gas f o r  t h e  length of channel 
from 0 t o  x produces t h e  add i t iona l  condi t ion on H ( 7 )  

(12c) 

Equation (11) can be in tegra ted  d i r e c t l y .  The r e s u l t i n g  expression f o r  t d  i s  

The quant i ty  i n  t h e  f i r s t  bracket  on t h e  r i g h t  s ide  of equation (13) rep- 
r e sen t s  the  customary t ransverse  temperature d i s t r i b u t i o n  f o r  cantinuum flow 
conditions ( r e f .  4 ) ,  while t h e  quan t i t i e s  i n  parentheses are connected with t h e  
e f f e c t  of t h e  ve loc i ty  jump. Equation (13) app l i e s  only i n  t h e  f u l l y  developed 
region downstream of t h e  thermal entrance region. 

Entrance Region 

To determine t h e  so lu t ion  i n  the thermal entrance reg ion  t h e  func t ion  te i s  needed. The func t ion  te must sat isfy the equation 
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with the  boundary conditions 

a t e  a = 0 a t  7 = -1 and a t  1 = +1 
7 

or by rearranging, 

It w i l l  be convenient t o  represent  t h e  entrance temperature 
t i o n s ,  @ ( ( , 7 )  and 

te by two func- 
Q ( ( , v ) ,  such t h a t  ( r e f .  4) 

By subs t i t u t ing  equation ( 1 6 )  i n t o  equation (14), it i s  found t h a t  t h e  func- 
t i o n  CJ i s  given by 

with t h e  boundary conditions 

a@ a = 0 a t  7 = -1 and 7 = +1 
7 

and t h e  funct ion R i s  given by 

with t h e  boundary conditions 

xi= an 0 at  7 = -1 and 7 = +1 

The condition a t  5 = 0 w i l l  be discussed short ly .  

A so lu t ion  t o  equation (17a) can be obtained as a product of two func- 
t i o n s ,  one depending on ( alone, t h e  other  depending on 1 alone. Then it 
can be shown t h a t  @ i s  emressed  by t h e  s e r i e s  
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where An and Yn a r e ,  respec t ive ly ,  t he  eigenvalues and 
t h e  Sturm-Liouville problem 

d2Yn 
+ A,f(?-j)Y, = 0 

dVZ 

eigenfunctions of 

In  a similar manner, t h e  func t ion  R i s  expressed by the  s e r i e s  

where yn and Zn a r e ,  respec t ive ly ,  t he  eigenvalues and eigenf'unctions of 
t he  Sturm-Liouville problem 

Combining equations (19)  and (21) i n  accordance with equation (16) y i e lds  t h e  
entrance temperature as 

The coe f f i c i en t s  an i n  equation (19)  and bn i n  equation (21) are eval-  
uated t o  s a t i s f y  t h e  condi t ion a t  t h e  entrance t o  t h e  heated channel (x = 0 ) .  
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Eva,luating equations (13) and (23) a t  x = 0 and subs t i t u t ing  t h e  values i n t o  
equation (15b) gives  

It i s  des i rab le  t o  evalua.te an and b, such tha.t  

n=l 

n=O 

By inspect ion of equahions ( 2 5 )  and (26) ,  it i s  evident t h a t  
a r e  even and odd funct ions,  respec t ive ly ;  t h a t  i s ,  Yn(7) = Yn(-q) and 
zn(q) = -z. ( -  7). 
and bn a r e  given by t h e  r e s u l t s  

Y n ( q )  and Zn(7) 

According t o  the  Sturm-Liouville theory,  t he  coe f f i c i en t s  an 
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I n  reference 5 it is  shown that the r e s u l t  f o r  t h e  coe f f i c i en t s  an reduces t o  

1 an = 

q=1> A=An 

The i n t e g r a l  appearing i n  the  denominator of equation ( 2 8 )  may be wr i t t en  as 

whereas upon subs t i t u t ion  of equation ( 2 2 )  and in tegra t ion  by p a r t s  t he  numer- 
a t o r  of equation ( 2 8 )  becomes 

The s e r i e s  coe f f i c i en t s  bn are thus 

The functions Yn and Zn and the  corresponding eigenvalues An and yn 
we as ye t  undetermined. Nevertheless, before a discussion of t he  ca lcu la t ion  
of these  quant i t ies  i s  undertaken, t h e  analysis  w i l l  be extended t o  the  formu- 
l a t i o n  of severa l  quan t i t i e s  of engineering i n t e r e s t .  

( 8 )  t o  obtain the  so lu t ion  t h a t  appl ies  over t h e  e n t i r e  length of t h e  channel, 
which i s  

Now t h a t  td and te are known, they  can be superposed as i n  equation 
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W a l l  Temperatures 

When t h e  wall heat f luxes a r e  spec i f ied ,  t h e  wall temperatures a r e  t h e  un- 
known quant i t ies  t h a t  m e  usua l ly  of most p r a c t i c a l  i n t e r e s t .  Before t h e  wall 
temperature va r i a t ions  can be determined, however, it i s  necessary t o  consider 
another e f f ec t  of gas r a re fac t ion  t h a t  en te r s  through t h e  thermal boundary con- 
d i t i o n  a t  a w a l l ,  permitt ing a jump between t h e  surface temperature 
t h e  adjacent gas temperature 

t, and 
tg (ref. 6 )  

where 
t i e s  of t h e  system by 

E t  r epresents  a temperature- jump coe f f i c i en t  r e l a t e d  t o  other  proper- 

2 - a  20 2 
a a + l P r  

E t  =--- 

Since t h e  w a l l  heat f l u x  i s  uniform, 

so  t h a t  t he  temperature jump a t  t h e  walls can be wr i t t en  as 

(33) 

can be found by evaluat ing equa- Then t h e  w a l l  temperatures tWyl and t 
t i o n  (31) at  7 = 1 and a t  7 = -1 and combining the  r e s u l t s  with equations 
(34a) and (34b) 

W Y 2  

91 E t  
q1 + q2 2b 

2 X 

- 2 
+ 

1 
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2 X 4 -  Z b  1 7  6 us 
+ iq:) - -  + - - - -  t W , Z  - t o  

(ql + q2)b - RePr 35 35 
Z K  

Convenient a l t e r n a t e  forms of equations (35) and (36) are t o  divide t h e  
l o c a l  w a l l  t o  bulk temperature difference by t h e  f u l l y  developed value. The 
r e s u l t i n g  r a t i o  w i l l  then approach un i ty  f o r  la rge  dis tances  from the  channel 
entrance. The r a t i o  i s  formed as follows: The l o c a l  bulk gas temperature 
along the  channel i s  given by 

Then t h e  difference between t h e  f u l l y  developed w a l l  and bulk temperatures f o r  
each w a l l  i s  

To i l l u s t r a t e  t h e  r e s u l t s ,  f u l l y  developed w a l l  t o  bulk temperature d i f -  
ferences have been computed as functions of the r a re fac t ion  parameter 
p-/Zpb, r e l a t e d  t o  t h e  mean free path through equation (5), p-/Zpb = 

-( 2/2b), f o r  gases with a Prandtl  number of 0.73 and a spec i f i c  heat  r a t i o  
of 1 . 4  and f o r  severa l  values of the heat-f lux r a t i o  q2/ql. For q2/q1 = -1, 
t h e  heat addi t ion a t  t h e  upper wall is  equal t o  t h e  heat ex t rac t ion  a t  the 
lower w a l l .  The case f o r  which t h e  lower w a l l  is  insu la ted  is  represented by 
q2/ql = 0, whereas symmetrical heat ing corresponds t o  
parameter 5, was taken f r o m  equations (4 )  and (5) with g = 1; while 6% was 

q2/ql = 1. The s l i p  
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taken from equations (5) and (33) f o r  values of t h e  accommodation coe f f i c i en t  
of 1 .0  and 0.4.  The temperature d i f fe rences  thus  obtained have been p lo t t ed  
i n  f igu re  2. A s  gas r a re fac t ion  increases ,  t h e  temperature difference 

Accommoiatioi 1 1 
r l l  coefficient, 

a 

1.0 
. 4  - - -  

Heat f lux  
ratio, - 

. . 
-10 

-2 

-1 

-. 6 

..t . 01 .02 .04 .06 .08 . 1  .2 
. .  
.01 .02 .04 .06 .1 . 2  

Rarefaction parameter, u&$hpb 

(a) Upper wall. (b) Lower wall. 

Figure 2. - Ful ly  developed wall to bulk temperature difference. Specular reflection coefficient, 1; specific 
heat ratio, 1.4; Prandtl  number, 0.73. 

(twYl - t b ) d ,  f o r  a given heat  f l u x  r a t i o ,  increases  over i t s  continuum value,  
obtained by s e t t i n g  us/% and Et/2b equal t o  zero i n  equation (38). For a 
given value of t he  r a re fac t ion  parameter (or, a l t e r n a t e l y ,  mean f r e e  pa th ) ,  t h e  
e f f ec t  of increasing heat  f l u x  r a t i o  i s  t o  reduce t h e  temperature difference 

The accommodation coe f f i c i en t  a l s o  has an important e f f e c t  on ( t w , l  - tb)d '  
t he  temperature d i f fe rence .  Smaller values of a give r i s e  t o  a higher con- 
t a c t  r e s i s t ance  between gas and w a l l  and thereby increase the  temperature d i f -  
ference (tWil - The e f f e c t s  of gas r a r e f a c t i o n  and accommodation coe f f i -  
c i en t  on the  temperature difference a t  t h e  lower w a l l  ( t w , 2  - t b ) d  a r e  similar 
t o  those e&ibi ted f o r  t h e  upper wall temperature difference.  For a given mean 
f r e e  path,  however, increasing the  heat  f l u x  r a t i o  increases  the  temperature 
difference.  

The r a t i o s  of l o c a l  t o  f u l l y  developed temperature differences a t  any 
loca t ion  i n  the  channel a r e  found from equations (35) t o  (39)  as 
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1 +x bnZn( 1 ) e x f S )  

n=O 

where 
2 \ 

Equations (40)  and (41) can be evaluated when numerical values of 
Y n ( l ) ,  Z n ( l ) ,  an, and bn have been obtained for given values of us/iT. 

An, rn, 

It i s  of i n t e r e s t  t o  examine the  wall t o  bulk temperature d i f fe rences  a t  
This i s  done by s e t t i n g  x = 0 i n  equa- t h e  entrance of t he  heated sect ion.  

t i o n s  (40)  and (41) t o  give the  r e s u l t s  
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According t o  equations (25) and ( 2 6 ) ,  however, when '1 = 1, 

and 

co 

bnZn(l) = -1 c 
n=O 

Then equations (43) and (44) reduce t o  t h e  simpler expressions 

In  t h e  absence of a temperature jump, t h e  w a l l  t o  bulk temperature difference 
i s  zero at  t h e  entrance f o r  e i t h e r  p la te .  
t h e  entrance temperature difference can have a nonzero value. Equations (45) 
and (46) have been p lo t t ed  i n  f igu re  3 as funct ions of t h e  parameters 

With a temperature jump, however, 

u s p ,  

1 4  



0 

- - - _ - _  
Ratio of sl ip to 
werage velocity 

u,/ci ,. 
I 

I I I  
.4  .6  

~ .a 
Temperature-jump coefficient, Et12b 

(a) Upper wall. 

-_ 
- - -  

- - - -  
0 

-1 ~- ---- 

(b) Lower wall. 

Figure 3. -Wa l l  temperature rat io at heated section entrance, 

k t / Z b ,  and q2/q1. 
creases  with increasing values of St/2b f o r  a l l  values of q2/q1 shown. For 
a given value of 
temperature difference.  "he r a t i o  of s l i p  t o  average ve loc i ty  has only a s m a l l  
influence on t h e  quant i ty  (t 
heat  f l u x  r a t i o ,  while f o r  
more pronounced. 

The entrance temperature difference a t  t h e  upper wall i n -  

St/2b, increasing t h e  heat f l u x  r a t i o  increases t h e  entrance 

- tb)o/(tw,l - tb)d f o r  s m a l l  values of t h e  
t h e  influence of t h e  s l i p  ve loc i ty  i s  

W Y l  

q2/q1 = 2 

The entrance temperature d i f fe rence  a t  t h e  lower wall l ikewise increases  
with increasing values of Et/2b f o r  a l l  values of q2/q1 considered. For a 
f ixed  value of 
q2/q1 = 1, has the  most pronounced e f f e c t  on the  temperature difference 
(tWyZ - tb)o/(twy2 - tb)d. 
t i o n  a t  t h e  upper wall i s  equal t o  t h e  heat  ex t rac t ion  a t  the  lower wall, t h e  
r a t i o  of s l i p  t o  average ve loc i ty  has no e f f e c t  on the  entrance temperature 
d i f fe rence  a t  e i t h e r  wall. 

Et/Zb, however, symmetrical heat ing,  which corresponds t o  

It i s  i n t e r e s t i n g  t o  note t ha t ,  when the  heat addi- 

Transverse Dis t r ibu t ion  Functions Y(y), Z(7)  

Attent ion i s  now d i r ec t ed  t o  the  S t m - L i o u v i l l e  eigenvalue problems 
(eqs. (20)  and (22)). The even funct ion Y ( 7 )  i s  the  so lu t ion  of equation ( 2 0 )  
and the  normalization convention Y ( 0 )  = 1. Asymptotic expressions f o r  t h e  
even eigenvalues An and constants an and Y n ( l )  a r e  given i n  reference 5 
and the  r e s u l t s  are presented here t o  make t h e  ana lys i s  more complete: 

15 
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-160 An 5 a n Y n ( l )  = 1 2  
"n C + l + -  C 

where 

Jo 
The f i rs t  f i v e  roo t s  of equation (47) 
are given i n  reference 7 f o r  a number 
of values of C. The values of I1 
f o r  any given s l i p  ve loc i ty  
are shown i n  f i g u r e  4. 

uS/z 

Ratio of sl ip to average velocity, uJU 

Figure 4. - Value of definite integral for any value of sl ip 
to average velocity ratio. 

The even eigenvalues and con- 
s t a n t s  for t h e  l imi t ing  case of s lug  
flow (uS/E- 1) between p a r a l l e l  
p l a t e s  a r e  given i n  reference 5 as 

-Gl A = nfi n = 1, 2,  . . . (51) 

A n = - -  2 
An 

The odd eigenvalues yn and constants bn and Z n ( l )  a r e  determined from 
t h e  so lu t ion  of equation ( 2 2 )  and t h e  condition 
methods presented i n  reference 5 t o  determine the asymptotic expressions f o r  
symmetrical heating, it i s  r e a d i l y  found t h a t  the asymptotic so lu t ion  of equa- 
t i o n  ( 2 2 )  s a t i s fy ing  t h e  condition Z(0) = 0 i s  

Z(0)  = 0 .  By applying t h e  

( 5 3 )  
-1/4 

Z(7 )  = F(l + 4 0 ) ~ / ~ ( 1  - q2  + 4Q) s i n  (fi J) 

where F i s  an a r b i t r a r y  constant, and 

16 



f i o m  t h e  condition dZ/dq = 0 at  q = I, t h e  eigenvalues 
t h e  roo t s  of t he  c h a r a c t e r i s t i c  equation 

+ + (1 + &@)sin-1  1 

6, cot  6, = - 41 + 48 

4( 48) 3/2 
, 

where 

r n  are obtained as 

The f i rs t  six roots  of equation (55)  a r e  given i n  reference 7 f o r  a number of 
values of C.  

The constants Z n ( l )  a r e  obtained by s e t t i n g  r = yn and q = 1 i n  equa- 
t i o n  (53) ,  which r e s u l t s  i n  

The s e r i e s  coef f ic ien ts  b, a r e  found from equations (30) and (53) as 

It is  convenient t o  introduce a new constant 
and Z n ( l )  

Bn, defined as t h e  product of b, 

-168 
2 

C + l + -  

Bn E bnZn(l) = 
r n 
C 

A noteworthy fea ture  of equation (59) i s  t h a t  t h e  coe f f i c i en t s  
pendent of t he  a r b i t r a r y  constant F. 

Bn are inde- 

17 
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For t h e  l imi t ing  base of s lug flow ( f ( 7 )  + 1) between p a r a l l e l  p la tes ,  t h e  
odd eigenvalues and constants are obtained from t h e  so lu t ion  of t h e  equation 

- I ( 6 0 )  

d2Zn 
d72 + Ynzn = 0 

Analytical 
solution 

The eigenvalues are given by 6 = (2n + 1)fl/2. For f ( 7 )  + 1 t h e  eigen- 
functions evaluated'at  t he  w a l l  are given as 
c i en t s  approach bn[ (7)+1- = (-l)n+12/FT,. 

given as B, = -2/yn. 

%(l) = ( - l )nF ,  while t he  coef f i -  
Then t h e  coe f f i c i en t s  Bn a r e  

The first four  values of 6 together  with t h e  corresponding values of 
a r e  l i s t e d  i n  t a b l e  I f o r  severa l  values of t h e  r a t i o  of s l i p  t o  average 

Numeri- 
cal 

solution 

TABU I. - EVEN EIGENVALUES AND COEFFICIENTS FOR LAMINAR SLIP FLOW 

3.33 

6.49 

9.65 

12.82 

IN PARALUL-PLATE CHANNEL W I T H  UNSYMMETRICAL W A L L  HEAT FLUX 

3.35 

6.41 

9.54 

12.69 

b 

3.23 

6.36 

9.50 

12.65 

I Ratio of slip to average velocity, uS/E 

3.141 

6.282 

9.423 

12.56 

1/3 

fi 3.540 
fi 6.800 
7 , 0 5  

fi 13.30 

solution cal 
solution 

3.78 

6.72 

9.78 

12.90 

0.2090 

-.0703 

-.0367 

- .0230 
~. 

A1 

A2 

A3 

A4 

-0,1479 

-.a642 

-.0332 

- .0198 

-0.2331 

- .0701 

- .0336 

-.0197 

-0.2110 

- .0613 

-.0281 

-.OX5 

1 

-0.2264 

- .0618 

- .0282 

- .0161 

-0.2030 

- .0508 

- .0226 

-.0127 

veloci ty .  The first four  values of 6 together  with t h e  corresponding 
values of Bn are l i s t e d  i n  t a b l e  I1 f o r  t h e  same values of us/G. The re- 
sults f o r  continuum flow were obtained from reference 4. To check t h e  l e v e l  of 
accuracy f o r  t h e  s l ip-f low values,  equations (20)  and (22)  were  solved numeri- 
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TABLF 11. - ODD EIGENVALUES AND COEFFICIENTS FOR IAMl3A.R SLIP FLOW 

O I  113 I 3/5 

IN PARAIJXL-PLATE CHANNEL WITH UNSYMMETRICAL WALL HEAT FLUX 

1 

5.125 

8.405 

11.68 

solution 
solution 

5.225 4.906 

8.250 8.066 

11.35 11.23 

Analytical 
solution 

-0.2309 

- -0983 
- .0513 

Eigenvalue 

-0.7286 

- .1163 

-.0469 

1.845 1 2.411 1 1.748 I 1.915 

B1 

B2 

B3 

B4 

-0.6641 

- .1157 

- .0504 
-.0289 

4.875 

7.975 

11.11 

Coefficient 

I 

-.0254 I -.0253 

____ 

-0.5495 

- .lo49 

- .0402 

- .0209 
~ 

Numeri - 
cal 

solution 

-0.7678 

- .lo68 

- .0402 
- .0208 

-0.810C 

- .0902 

- .0324 
- .0166 

c a l l y  by means of t h e  Runge-Kutta method on an IBM 7094 d i g i t a l  computer. 
erence 5 has presented numerical values f o r  t h e  even quan t i t i e s  An and %, 
and the r e s u l t s  a r e  given i n  t a b l e  I. Equation ( 2 2 )  was solved numerically i n  
t h e  course of t he  present invest igat ion.  The forward in tegra t ion  was s t a r t e d  
by using t h e  condition and by a z b i t r a r i l y  l e t t i n g  (dZn/dq)9=0 = 1. 
The eigenvalues were found by t r i a l  and e r ro r  u n t i l  t he  zero-derivative bound- 
a r y  condition was s a t i s f i e d  at  -q = 1. The first four  odd eigenvalues yn and 
constants Bn are given i n  t a b l e  11. The even and odd quan t i t i e s  as computed 
from t h e  previously presented ana ly t i ca l  expressions a r e  i n  c lose agreement 
with t h e  values obtained by means of t h e  Runge-Kutta method, espec ia l ly  f o r  
n 2 2. I n  view of t h e  very good l e v e l  of agreement t h a t  i s  demonstrated, it i s  
concluded t h a t  t h e  formulas f o r  t h e  even and odd quan t i t i e s  are su i t ab le  f o r  
n 2 2. 

R e f -  

Zn(0) = 0 

W a l l  Temperature Distr ibut ions 

W i t h  t h e  numerical information i n  t a b l e s  I and I1 t h e  dimensionless w a l l  
temperature va r i a t ion  along t h e  upper w a l l  as given by equation (40) and along 
t h e  lower w a l l  as given by equation (41) aze p lo t t ed  i n  figures 5 t o  1 2  f o r  
various values of us. and 5t/2b and f o r  a f e w  values of q2/q1. 

Inspection of figures 5 t o  1 2  reveals  severa l  i n t e re s t ing  t rends.  For t h e  
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io of sl ip to average- 
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io of sl ip to average- 
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(a) Temperature-jump coefficient. 0.4. 

(b) Temperature-jump coefficient, 0.1. 

U (a) Temperature-jump coefficient, 0.4. 
n 1.0 
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cu 

2 n 
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(b) Temperature-jump coefficient, 0.1. 
1.0 

.a 

.6  

- 4  

0 .04 . oa .12 .16 . 2  

Dimensionless axial distance, (x/2b)/RePr 

(c) Temperature-jump coefficient, 0. 

thermal entrance region. Heat f lux  ratio, -1. 
Figure 5. -Wa l l  temperature rat io along upper wall in 

(c) Temperature-jump coefficient, 0. 

Figure 6. -Wa l l  temperature rat io along lower wall in 
thermal entrance region. Heat f lux ratio, -1. 

various w a l l  heating s i tua t ions  represented, increasing t h e  s l i p  ve loc i ty  de- 
creases  t h e  difference between bulk and wall temperature a t  a given axial  posi-  
t i o n  i n  t h e  thermal entrance region, while t h e  temperature jump increases  t h e  
difference.  Thus t h e  s l i p  ve loc i ty  has t h e  e f f e c t  of r e t a rd ing  t, - t b  i n  
i t s  approach t o  the  f u l l y  developed value, while t he  temperature jump has the  
opposite e f f ec t .  It i s  noteworthy t h a t  t h e  wall temperature r a t i o s  
(tw,l - t b ) / ( t w , l  - t b ) d  
flux r a t i o s  of -1 and 1. 

and (t,,Z - t b ) / ( t w , Z  - t b ) d  are i d e n t i c a l  f o r  heat 

Athermal  entrance length can be a r b i t r a r i l y  defined as the  length r e -  
quired f o r  
hor izonta l  dashed l i n e  corresponding t o  an ordinate  of 0.95 is  shown i n  f igures  

t, - t b  t o  be within 5 percent of t h e  ful ly  developed value. A 
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(a) Temperature-jump coefficient, 0.4. 

(b) Temperature-jump coefficient, 0.1. 0 - 

0 .04 
Dimensionless axial distance, (x/Zb)/RePr 

(c) Temperature-jump coefficient, 0. 

thermal entrance region. Heat f lux ratio, 0. 
Figure 7. -Wa l l  temperature rat io along upper wall in 

1 
1 .20 

5 t o  10 and 12. The increase i n  the r -  
m a l  entrance length with increasing 
s l i p  i s  apparent. For a given r a t i o  of 
s l i p  t o  average veloci ty ,  increasing 
the  temperature jump decreases t h e  
thermal entrance length. It should be 
noted tha t  t he  length required t o  
approach f u l l y  developed conditions,  
f o r  given ve loc i ty-s l ip  and 
temperature-jump values, i s  greater f o r  
unsymmetrical heat ing than f o r  symmet- 
r i c a l  w a l l  heat f lux .  

It is  of i n t e r e s t  t o  present t h e  
w a l l  t o  bulk temperature differences i n  
the  thermal entrance region i n  terms 

I I I I  
Ratio of sl ip to average 

ve l o t  it y, 

.04 .08 .12 .16 .20 
Dimensionless axial distance, (xl2bdRePr 

Figure 8. -Wa l l  temperature rat io along lower wall in 
thermal entrance region. Heat f lux ratio, 0. 

of the  r a re fac t ion  parameter p q / 2 p b .  
t o  16  f o r  severa l  values of t h e  heat flux r a t i o .  The abscissas  cover values of 
y1W/2pb  ranging from 0 t o  0.20, even though th i s  l a t t e r  value may perhaps 
be outs ide the  s l i p  regime, s ince at  lower dens i t ies ,  i n  t h e  beginning of t h e  
t r a n s i t i o n  regime, p r io r  f indings suggest t h a t  s l ip-f low solut ions may remain 
f a i r l y  good ( r e f .  6 ) .  
increasing t h e  gas r a re fac t ion  shortens the  thermal entrance length a t  e i t h e r  
w a l l .  The increase i n  temperature jump with a decrease i n  accommodation Coef- 
f i c i e n t  a l s o  has an important e f f e c t  on the  thermal entrance length.  For t he  
heat  f l u x  r a t i o  q2/q1 = 0, increasing the  raxefact ion decreases t h e  entrance 
length a t  t h e  heated upper w a l l  ( f i g .  1 4 ( a ) ) ,  while it increases t h e  entrance 
length at  the  insu la ted  lower w a l l  ( f i g .  1 4 ( b ) ) .  For a given mean f r e e  path, 

This has been done i n  f igu res  13 

For a l l  values of t h e  heat f lux r a t i o  except 92/91 = 0 ,  
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t h e  length required f o r  t h e  w a l l  temperature r a t i o  t o  approach un i ty  i s  
l e a s t  f o r  t h e  channel with symmetrical wall heat  flux ( f i g .  15), as noted 
e a r l i e r .  

OTHER RAREFACTION EFFECTS 

Several other,  l e s s  f requent ly  considered r m e f a c t i o n  e f f e c t s  have been 
c i t e d  i n  t h e  l i t e r a t u r e  and, f o r  t h e  sake of completeness, modification of t h e  
hea t - t ransfer  r e s u l t s  will be made or discussed t o  account f o r  these s l i p  ef- 
f e c t s .  

LO 

.9 

.8 
(a) Temperature-ju I coefficient, 0.4. 
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(a) Temperature-jump coefficient, 0.4. 
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I c 

(b) Temperature-ju 
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(b) Temperature-jump coefficient, 0.1. I coefficient, 0.1. 0 .- 5 1.0 
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Dimensionless axial distance, (x/Zb)/RePr 

(c) Temperature-jump coefficient, 0. 

.10 " 02 .I . L" . L- 
Dimensionless axial distance, (xlZb)/RePr 

(c) Tqmperature-jump coefficient, 0. 

thermal entrance region. Heat f lux ratio, 1. 
Figure 10. - W a l l  temperature rat io along lower wall in Figure 9. -Wa l l  temperature rat io along upper wall in 

thermal entrance region. Heat f lux ratio, 1. 
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W a l l  Shear Work 

It i s  proposed i n  reference 8 t h a t  when the re  i s  a s l i p  flow an energy 
balance a t  t h e  w a l l  must include the  shear work done by t h e  s l ipping gas. De-  
noting, as before, t h e  heat  t r ans fe r  from the upper and lower w a l l s  by ql and 
q2, respect ively,  t h e  proposal i s  equivalent t o  wr i t ing  t h e  temperature deriva- 
t i v e  a t  the  walls i n  t h e  f u l l y  developed region as 

I t  
~ a t k  of si ip to  average 

velocity, 

- r-r i 

(a) Temperature-jump coefficient, 0.4. 

(b) Temperature-jump coefficient. 0.1. 

1 
0 .M .08 .12 .16 

Dimensionless axial distance, (x/ilb)/RePr 

(c) Temperature-jump coefficient, 0. 

thermal entrance region. Heat f lux  ratio, 2. 
Figure 11. -Wa l l  temperature rat io along upper wall in 

1.0 

.8 

.6 
(a) Temperature-jump coefficient, 0.4. 

(b) Temperature-jump coefficient, 0.1. 

Dimensionless axial distance, (x/Zb)/RePr 

(c) Temperature-jump coefficient, 0. 

Figure 12. -Wa l l  temperature rat io along lower wall in 
thermal  entrance region. Heat f lux ratio, 2. . 
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where q* i s  an equivalent heat flux defined as 

(a) Upper wall. (b) Lower wall. 

Figure 13. - W a l l  temperature rat io in thermal entrance region. Specular reflection coefficient, 1; specific heat ratio, 1.4; 
Prandtl number, 0.73; heat f lux ratio, -1. 

(b) Lower wall. (a) Upper wall. 

Figure 14. -Wa l l  temperature rat io in thermal entrance region. Specular reflection coefficient, 1: specific heat ratio, 1.4; 
Prandtl number, 0.73; heat f lux ratio, 0. 
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Then if everywhere tha.t q1 and q2 fonnerly appeared q1 + q* and q2 + q*, 
respec t ive ly ,  are now wri t t en ,  t h e  p r i o r  a n a l y s i s  cont i  iiues t o  be appl icable .  
For an "adiaba.tic" lower p l a t e  ( q2 = O), t he  tempei-a,ture d-erivative at t h e  m l l  
i s  now given by = -q*/K. 

.02 .04 .06 .08 .10 
Dimensionless 

. l5 I  i 1 .  i 

(a) Upper wall. (b) Lower wall. 

Figure 15. - Wall temperature ia t io  in thermal entrance rzqion. Soecular reflection coefficient, 1; specific heat ratio, 1.4; Prandtl 
number, 0.73; heat flux ratio, 1. 

1.0 I I '  

~ 

Rarefaction 
parameter, I ( < ,  

rp 

(a) Upper wall. 

a 

- 1.0 
.4 _ - _  

coefficient, 

.12 .16 
Dimensionless axial distance, (x/Zb)/RePr 

(b) Lower wall. 

Figure 16. -Wa l l  temperature rat io in thermal entrance region. Specular reflection coefficient, 1; specific heat ratio, 1.4; Prandtl  
number, 0. 73; heat flux ratio, 2. 
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Modified Temperature Jwnp 

The temperature jump derived f o r  a s t a t iona ry  gas should be modified f o r  a 
moving gas ( r e f .  9 ) .  The proposal i s  tantamount t o  a l t e r i n g  equations (32a) 
and (32b) t o  read .  

respec t ive ly ,  where 

1 - a  g )u: 
a 2 - g  cp (04! + -- - * tw = tw + - 

a r e  replaced at  a l l  places by t* and tG,2 ,  r e -  and t w , 2  w, 1 Hence if tw,l 
spect ively,  t h e  foregoing developments continue t o  apply. 

Thermal Creep 

When a gas adjacent t o  a surface encounters a temperature gradient along 
t h e  surface,  there  w i l l  be an addi t iona l  ve loc i ty  (thermal creep) induced i n  
the  d i r ec t ion  of increasing temperature (ref. 10) and t h e  s l i p  ve loc i ty  i s  
a l t e r e d  from t h a t  given i n  re ference  5 t o  

3 'JRg & 
us = %(g)y=Tb + - 4 - P 

The ana lys i s  i n  t h e  main body of t h e  inves t iga t ion  has not included the  
thermal creep ve loc i ty .  As  a consequence, t h e  ve loc i ty  f i e l d  could be deter-  
mined independently of t h e  temperature and t r e a t e d  as f u l l y  developed. 
thermal creep i s  not negl ig ib le ,  t h e  temperature and ve loc i ty  f i e l d s  a r e  mutu- 
a l l y  interdependent, and t h e  momentum and energy equation system f o r  t h e  gas 
presents  an extremely complicated mathematical problem. 
hea t - t ransfer  region, of course, &/ax 
be included i n  equation (65) without d i f f i c u l t y .  
gion, however, &/ax va r i e s  with x. 

If 

I n  t h e  f u l l y  developed 
i s  a constant and t h e  thermal creep can 

I n  t h e  thermal entrance r e -  

The present solut ions without t h e  inclusion of thermal creep a r e  s t i l l  
very useful,  since they  represent  t h e  zeroth-order solut ions.  The range of 
v a l i d i t y  of t he  present solut ions must be establ ished pr imari ly  by comparison 
with experimental data .  Within the  knowledge of t h e  author,  t he re  a r e  no heat-  
t r a n s f e r  measurements f o r  low-density flows i n  conduits ava i lab le  with which t o  
compare t h e  r e s u l t s  predicted herein.  A more general  ana lys i s  t h a t  would take 
i n t o  account thermal creep i s  a l s o  w e l l  i n  order. I n  any event, t he  present 
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a n a l y t i c a l  so lu t ions  should prove usefu l  t o  the  design engineer by o f fe r ing  a 
method that  allows, i n  the  absence of thermal creep, a r ap id  determination of 
the  eigenvalues and the  coe f f i c i en t s  of t he  s e r i e s  expansions w i t h  high accu- 
racy. This i n  t u r n  allows f o r  a rap id  determination of t h e  heat t r a n s f e r  i n  
design ca lcu la t ions .  F ina l ly ,  t h e  ana lys i s  exhib i t s  general  e f f e c t s  of s l i g h t  
gas r a re fac t ion  and w a l l  heat  f luxes  on forced-convection heat  t r a n s f e r  i n  
channels. 

CONCLUDING RENARKS 

Solutions have been obtained f o r  laminar, forced-convection heat  t r a n s f e r  
t o  a s l i g h t l y  r a r e f i e d  gas flowing between p a r a l l e l  p l a t e s  with constant (but  
unequal) heat  f luxes  a t  t h e  p l a t e s .  
and f u l l y  developed regions can be obtained as funct ions of t he  ve loc i ty  and 
temperature jumps a t  the  w a l l ,  or as funct ions of t he  mean f r e e  path,  f o r  var- 
ious w a l l  heat  f l u x  r a t i o s .  Several  cases of general  i n t e r e s t  a r e  considered, 
and t h e  so lu t ions  a r e  given i n  graphical  form t o  i l l u s t r a t e  t h e  e f f e c t s  of 
s l i g h t  r a re fac t ion  and w a l l  heat  f l u x  r a t i o  on heat  t r a n s f e r  t o  a flowing gas. 

The wall temperatures i n  both t h e  entrance 
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APPENDIX - SYMBOLS 

coe f f i c i en t  defined i n  eq. (48)  

accormoda,tion coe f f i c i en t  

coe f f i c i en t  i n  even s e r i e s  expansion 

coe f f i c i en t  defined i n  eq. (59) 

half d i s tance  between p l a t e s  

coe f f i c i en t  i n  odd series expansion 

constant defined i n  eq. ( 4 7 )  

spec i f i c  hea t  of gas 

a r b i t r a r y  constant 

dimensionless ve loc i ty ,  u( v )  /E 

funct ion defined by eq. ( 2 5 )  

specular r e f l e c t i o n  coe f f i c i en t  

t ransverse  temperature d i s t r i b u t i o n  i n  f u l l y  developed region 

d e f i n i t e  i n t e g r a l  defined i n  eq. (50)  

i n d e f i n i t e  i n t e g r a l  defined i n  eq. (54)  

d e f i n i t e  i n t e g r a l  defined. i n  eq. (56b),  equa.1 to I1 

mean f r e e  pa.th 

Prandt l  number, pcp/K 

gas pressure 

r a t e  of hea t  t r a n s f e r  per  u n i t  a r ea  from w a l l  t o  gas 

shear work a,t w a l l  

Reynolds number, Z p i i b / ~  

gas constant 

gas temperature 

temperature of gas adjacent t o  w a l l  
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gas ve loc i ty  

a,xial  c oord i nat  e 

even t ransverse  d i s t r i b u t i o n  func t ion  

eigenfunctions of eq. (20) 

t ransverse coordinate 

odd t ransverse d i s t r i b u t i o n  funct ion 

eigenfunctions of eq. ( 2 2 )  

thermal d i f f u s i v i t y ,  i</pcP 

-& 11 

-Jr, J1 
eigenva,lues of eq. ( 2 2 )  

dimensionless a.xial dis tance,  4(x/2b)/RePr 

di-mensionless t ransverse  coordinate,  y/b 

dimensionless v e l o c i t y  s l i p  coe f f i c i en t ,  tu/2b 

gas thermal conduct ivi ty  

eigenva,lues of eq. (20) 

gas v i scos i ty  

temperature-jump coe f f i c i en t  

ve loc i ty - s l ip  coe f f i c i en t  

gas dens i ty  

r a t i o  of spec i f i c  heats 

funct ion defined i n  eq. (16) 

r a re fac t ion  parameter, p q / 2 p b  

function defined i n  eq. (16)  

Subscr ipts  : 

b gas bulk condi t ion 

I .. .. - . . . -. .. .. 
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d f u l l y  developed region 

e entrance region 

s s l i p  

w wall condi t ion 

0 entrance,  x = 0 

1 upper w a l l ,  y = b 

2 lower w a l l ,  y = -b 

Superscr ipt :  

- average 
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